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A finite-size �or scale� Lyapunov exponent �FSLE�, �a�x�, is presented in a statistical mechanical framework
and employed to characterize mixing in a variety of laboratory and computational fluid mechanics experiments.
The FSLE is the exponential rate at which two particles separate from a distance x to ax. Laboratory particle
tracking experiments are used to study penetrative convection and flow in porous media while computational
experiments are used to study Lévy processes and deterministic diffusion. The apparent scaling relation
�a�x��Cax−��a� of the FSLE holds over intermediate initial separations where the laboratory experiment data
is most accurate and asymptotically for the computational experiments. The dependence of the exponent � on
a decreases with increasing a. In the matched index porous system, Ca is also a function of mean fluid velocity.
The exponent � is � when the Lévy process is �-stable and in this case � is independent of a.
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I. INTRODUCTION

Velocity fluctuations over a hierarchy of space-time scales
drive dispersive mixing in fluids. Pressure differences, het-
erogeneity in porous media, viscosity, buoyancy, and tem-
perature differences all lead to dispersive mixing. This article
is focused on examining the mixing process for a variety of
flow fields by employing the finite-size �or scale� Lyapunov
exponent �FSLE� as well as introducing a statistical me-
chanical definition for the FSLE. All experiments reported
herein are designed to capture the trajectories of labeled par-
ticles. These trajectories are used to construct the FSLE,

�a�x� =
1

Ta�x�
ln a ,

a measure of the growth rate of the mixing zone, or alterna-
tively, a measure of the growth rate of finite-size perturba-
tions. Here Ta�x�, the a-time, is the average time it takes two
particles separated by a distance x to reach a separation of
ax. Since ax is the threshold, a is called the threshold ratio. If
x is thought of as a measure of the scale of the mixing layer
in a dispersive flow, then �a�x� measures the exponential rate
of growth to scale ax,

e�a�x�Ta�x� = a .

A heuristic definition of �a was presented in Aurell et al.
�1,2� and several of its properties were studied in the context
of Shannon’s information theory. In the Fickian limit, Aurell
et al. showed the FSLE will be inversely proportional to the
square of the initial separation and directly proportional to
the classical diffusion coefficient �2�.

The FSLE may be used in a Lagrangian setting to study
dispersive mixing at different scales. It is a generalization to
finite separations of the Lyapunov exponent which measures
the asymptotic exponential rate of divergence of two initially
infinitesimally close trajectories. The FSLE’s application to
dispersion in turbulent flow fields has been studied by Aurell
and co-workers through numerical experiments on chaos and
turbulence and particle tracking of a confined convective
flow �1–6�. LaCasce and Ohlmann �7� used the FSLE to
study relative dispersion at the surface of the Gulf of Mexico
and Lacorata et al. �8� used it to study transport of balloons
in the lower stratosphere and both found �a�x��x−2/3 for
intermediate separations. The FSLE has also been applied in
models of velocity structure to study stirring �9� and to dis-
crete and continuous models having coupled fast and slow
time scales �10,11�.

As will become apparent, our definition of Ta�x� and sub-
sequent usage of the FSLE differs from earlier work. We
explicitly include in the definition a way to account for flows
where particles may get trapped in regions of space �e.g.,
eddies� where they continually resample separations. Addi-
tionally the FSLE has historically been defined as a discrete
function of the initial separation. Our definition makes it a
continuous function of initial separation which offers the
possibility for more detailed theoretical study. Our goal is to
provide a rigorous statistical mechanical definition for the
a-time and employ this probabilistic approach in the FSLE to
study dispersion during four disparate flow experiments. This
expands the range of experiments for which the FSLE can be
applied and additionally analyzes data differently by study-
ing a variety of threshold ratios, a, rather than using a as a
fixed parameter. The laboratory experiments include penetra-
tive convection in a stratified fluid and steady flow in both
heterogeneous and homogeneous porous media, while the
numerical experiments involve one-dimensional determinis-
tic diffusion and �-stable Lévy processes.*Corresponding author. Email address: jcushman@purdue.edu
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In the following subsections we introduce the systems that
will be studied and place them in the context of their appli-
cability. Section II details the statistical mechanical definition
of the FSLE. Section III outlines the details of experimental
setups. Section IV presents visualizations and FSLE results
and the paper concludes in Sec. V.

A. Penetrative convection

The flux through the interface between a mixing layer and
a stable layer plays a major role in understanding, character-
izing and forecasting the quality of water in stratified lakes
and the upper portion of the oceans and the quality of air in
the atmosphere. The advance of a turbulent fluid into a fluid
layer of stable stratification is called penetrative convection
�12�.

A penetrative convective flow is observed in the atmo-
sphere when solar heating creates an unstable boundary layer
at the earth surface. In many lakes an analogous phenom-
enon occurs starting from the upper free surface and pen-
etrating downward with time. In the ocean, under calm con-
ditions, the upper 20 or 30 m usually exhibit a continuous,
moderately stable density distribution. When a wind begins
to blow over the surface, turbulence in the water is generated
both by the mean shear and by sporadically breaking waves.
With elapsed time, entrainment or erosion by the turbulence
of underlying denser water causes the turbulent layer to be-
come deeper. Relatively rapid mixing creates an approxi-
mately uniform density distribution in the upper layer, and
entrainment takes place across the interface between the tur-
bulent and stable fluids �13�.

When thermally induced, penetrative convection orga-
nizes into domes or spatial regions with significant vertical
motion. The domes spring up from the heated surface below
and stress the stable layer above creating internal waves
above the mixing layer �in lakes and oceans domes emerge
from the cooled surface above and stress the stable layer
below�. Convection is initially organized in persistent coher-
ent structures, but later the flow becomes turbulent and the
structures form and break randomly in space. Within the un-
stable layer, the fluid temperature, density and velocity
change rapidly with time.

B. Porous media

Natural porous media can be found on scales that range
from the nano �clays� to the global �lithosphere�. Engineered
porous media play a fundamental role in modern technolo-
gies such as drug delivery substrates, tile insulators, lubri-
cants, and inkjet printers to name a few. Dispersion of chemi-
cals in porous systems, which is important from both
environmental and technological perspectives, is notoriously
difficult to study experimentally. Although it is almost rou-
tine to image the internal structure of porous medium, it
remains a great challenge to obtain trajectories of individual
particles as they traverse the system.

Matched-index media which are transparent for a given
wavelength of light offer great promise for studying La-
grangian flow fields in porous systems. The only naturally
occurring matched-index medium is a cryolite-water mixture

at room temperature; however, one can create an artificial
liquid and solid matched-index system in several ways, one
being a mixture of Pyrex and glycerol which is transparent to
visible light at 23 °C. If a light scattering conservative tracer
is introduced into such a system and a pressure gradient ap-
plied, then Lagrangian fluid-particle trajectories can be im-
aged within the pore space.

C. �-stable Lévy processes

�-stable Lévy processes are random processes which gen-
eralize Brownian processes by allowing for a larger variance
for the process increments �the variance for the process itself
is infinite�. These processes have a variety of applications
including microbial motility �14�, anomalous dispersion �15�,
transport in fractal porous media �16�, and turbulence theory
�17�. A Lévy process can be utilized to model particle trajec-
tories �14� or particle velocity �16�.

For a each fixed time increment an �-stable Lévy process
has an �-stable distribution �18�. We discuss here the one-
dimensional case; however, it can be generalized to multidi-
mensional setting. The �-stable Lévy process has stationary
and independent increments. The parameters of the �-stable
Lévy distribution, S��� ,� ,��, are the index of stability �
�2; the skewness �; the scale parameter �; and the shift
parameter �. If �=2, the distribution of the Lévy process at
time t is a normal distribution, N�2t� ,��, so a two-stable
Lévy process is just a Brownian process. For �	2 the sec-
ond moment is infinite. The path created from the Lévy pro-
cess is self-similar and fractal �19� with larger probability of
long jumps for decreasing �. To simulate the Lévy process
we utilize the well established Chambers-Mallows-Stuck
code for an �-stable distribution �20�.

There are several ways to obtain the FSLE from generated
data. One can generate a reasonable amount of trajectories
and then compare pairs of trajectories, reusing the trajecto-
ries at different starting points and hence different separa-
tions. Since this is a numerical experiment, more flexibility is
allowed in the generation of trajectories. Alternatively, be-
cause the difference between two �-stable Lévy processes is
also �-stable Lévy, one can generate a single trajectory and
consider it as the difference of two trajectories. Both meth-
ods produce the same FSLE.

In general, the FSLE is a two-particle statistic but, as just
pointed out, can sometimes be computed from a single-
particle trajectory. If the distribution of the trajectories is
known in advance �like the �-stable Lévy processes� and the
distribution of the difference between trajectories is known,
then it suffices to use a single trajectory. However, with ex-
periments the distribution of the difference is not known a
priori and so the FSLE must be computed using two particle
statistics.

D. Deterministic diffusion

The Lagrangian map

xn+1 = xn + p sin 2
xn �1�

is well known to represent a deterministic diffusion �2�. We
utilize this map to study issues of data analysis as well as to
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examine the behavior of a well understood system. It also
allows us to make comparisons with previous results on the
FSLE.

II. THEORETICAL BACKGROUND

A. Finite-size Lyapunov exponent

Define Ta�x� to be the average time required for two par-
ticles separated by a distance x to reach a distance ax apart
for the first time. T2�x� is known as the doubling time and we
call Ta�x� the a-time. The aim is to embed Ta in a formal
statistical mechanical framework and subsequently use it to
define the FSLE.

Let ��t� denote the configuration pair space of dimension
N�N−1�d, where d is the number of spatial dimensions
needed to describe a particle position and N is the number of
particles in the system. Consider the case where d=3. Points
in ��t� are denoted by

„r1,2�t�,�1,2�t�,1,2�t�,r1,3�t�,�1,3�t�,

�1,3�t�,…,rN−1,N�t�,�N−1,N�t�,N−1,N�t�… .

The vector (rij�t� ,�ij�t� ,ij�t�) describes the separation be-
tween particles i and j in spherical coordinates where rij�t� is
the distance between the particles. In the definition of Ta�x�,
only the radial coordinate is of interest and the others may be
integrated away. Henceforth, without loss of generality, we
let points in ��t� be represented by the radial degrees of
freedom in N�N−1�-dimensional space.

Define the N2�N−1�2-dimensional pair separation space
��t ,��=�������t+�� which we endow with the probabil-
ity measure f , where f(r1,2��� ,r1,3��� ,… ,rN−1,N��� ,r�1,2�t
+�� ,r�1,3�t+�� ,… ,r�N−1,N�t+��)dr1,2dr�1,2¯drN−1,Ndr�N−1,N

is the joint probability that particles i and j have separation
in �ri,j ,ri,j +dri,j� at time � and separation in �r�i,j ,ri,j

+dr�i,j� at time t+�, ∀i=1,… ,N−1, j=1,… ,N.
Let G�

i,j�x ,y ;� , t� be the conditional probability of two
particles �i and j� being separated by a distance y for the first
time at �+ t, given they were separated by x at time �. In the
statistical mechanical framework outlined above, this can be
written

G�
i,j�x,y ;�,t� =

E�IAi,j��,t��„x − ri,j���…�„y − ri,j�� + t�…�

E�IAi,j��,t��„x − ri,j���…�
,

�2�

where IAi,j��,t� is the indicator function on the set

Ai,j��,t� = �ri,j���:eiLt�ri,j��� 	 y ∀ � � t� 	 � + t� , �3�

ensuring that only the first time after � that the particles reach
the separation y is counted. Here � is the usual Dirac delta
distribution, the expectation is taken on the probability space
�� , f� and L is the Liouville operator.

The integral

Gi,j�x,ax;t� = lim
�→�

�
0

�

G�
i,j�x,ax;��,t�d��

Nx,y
i,j ��,t�

�4�

is the conditional probability that, given particles i and j are
separated by a distance x at some time, they reach a distance
y �for the first time� after t-time units have elapsed. Nx,y

i,j �� , t�
is the number of times that the particles i and j go from the
distance x to y when the initial separation x occurs prior to
time �. The integration in Eq. �4� accounts for pairs of par-
ticles separated more than once by a distance x before time �.
For example, a pair of particles stuck in an eddy would pe-
riodically sample many separations. Each time a pair of par-
ticles reaches the distance x apart, � acts as a new time ori-
gin. The denominator normalizes Gi,j�x ,ax ; t�. Since the
limit of either the numerator or denominator may not exist,
such as in a period flow, the limit must be taken after divi-
sion. If a flow is to have a nonzero FSLE, then with prob-
ability one the particles must reach the desired threshold ax.
Form the conditional probability for the system by averaging
over all particles

G�x,ax;t� =
1

N�N − 1�	i�j

Gi,j�x,ax;t� . �5�

The a-time is the first moment of the probability defined in
Eq. �5�,

Ta�x� = E�G�x,ax;t�� = �
0

�

tG�x,ax;t�dt . �6�

The statistical mechanical definition of the finite-size
Lyapunov exponent is

�a�x� =
1

Ta�x�
ln a �7�

with Ta�x� defined in Eq. �4�. We refer to x as the initial
separation and a as the threshold ratio.

This definition for the FSLE is greatly simplified in a
system that is completely expansive, that is, when particles
do not return to the initial separation x or to the threshold
ratio y. In this case one can replace the definition of G�x ,y ; t�
with the simpler definition

G�x,y ;t� =
1

N�N − 1�

��
0

�

	
i�j

E��„x − ri,j���…�„y − ri,j�� + t�…�
E��„x − ri,j���…�

d� . �8�

In this contribution, G�x ,ax ; t�dt in Eq. �6� is calculated
by discretizing time based on the size of initial separation
and the type of system. To numerically confirm this is the
average time of separation from x to ax, we have also calcu-
lated the a-time by pairwise averaging. The results of the
methods agree for a variety of experiments, however, we
emphasize that the definition in terms of probability densities
is entirely mathematical in description. As all the experi-
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ments yield data at discrete points, we have chosen to use
linear interpolation between data points for analysis.

We expect that at the initial separations considered, all
pairs of trajectories will have probability one of reaching the
desired threshold in finite time, however, each experiment
will have natural fluctuations in the a-time at any given sepa-
ration. Since the data are from laboratory experiments, the
trajectories are of different lengths and not all pairs of par-
ticles will achieve the desired separation ax in the time
tracked. We maintained a record of the percent of pairs that
reach the threshold in order to determine the accuracy of the
FSLE for a given separation and threshold ratio. If the per-
centage of particles reaching the desired threshold is less
than 100%, the a-time has been underestimated �the FSLE
has been overestimated�.

To handle the effect of the trajectory length, we made
several comparisons and have imposed a fixed comparison
time for analysis of an experiment. Two particles are com-
pared only if there is at least the specified number of data
points. Additionally, they are compared only for the specified
amount of time even if more information is available. This
prevents bias toward the shorter a-times in the data analysis
as well as allowing us to uniformly cut off the upper times.
This of course was not necessary for the deterministic diffu-
sion and �-stable Lévy process.

III. EXPERIMENTAL SETTINGS

Particle tracking velocimetry �PTV� is a fully three-
dimensional technique which allows one to determine trajec-
tories by tracking individual particles. It is especially suited
to a Lagrangian study of fluid motion, a feature that other
techniques do not have �21�. The main steps in a PTV inves-
tigation are �i� seeding the flowing fluid with small highly
reflecting particles; �ii� illuminating as uniformly as possible
the flow field within a sampling window; �iii� acquiring im-
ages of the particles located within this window with an im-
aging rate that determines the time resolution of the method;
�iv� preprocessing the images to eliminate background noise;
and �v� determining the particle image coordinates in each
frame with subpixel accuracy.

A. Matched-index porous media

In this experiment, three-dimensional �3D� trajectories are
obtained inside porous media by stereoscopically matching
orthogonal 2D projections. Details of the image analysis al-
gorithms can be found in Moroni and Cushman �22�. Figure
1 illustrates the setup. Perspex boxes of dimensions 30
�30�50 cm3 and 10�10�50 cm3 are used for test sec-
tions. These are filled with Pyrex pieces of varying size. Void
space between the pieces is filled with glycerol, which at
23 °C has the same refractive index ��1.47� for visible light
as for Pyrex. The glycerol is continuously circulated through
the test section, top to bottom or bottom to top via a hydrau-
lic circuit and a peristaltic pump. A high-power lamp lights
the test section and two high-resolution cameras �2048
�2048 pixels� with orthogonal optical axis record images
�Fig. 1�. To illuminate the medium and avoid the direct in-

teraction among the light and cameras, a mirror has been
used to create a light beam that moves with the draining
fluid. Black frames were used to obtain square windows for
observation.

A calibration system similar to that used in �22� is em-
ployed to minimize errors linked to image optical distortion
and test-section acquisition-system misalignment. Accurate
alignment of the camera acquisition system is critical to re-
ducing errors caused by distortion of optical rays and accu-
rate reconstruction of the third coordinate from two projected
trajectories. A laser was used to align the system to check the
camera optical axis horizontal angle and the test section
walls vertical angle. The cameras, situated 1.8 m from the
face of the test section, were coupled charge device �CCD�
Kodak Megaplus 4.2 with an acquisition rate of one frame
per second and resolution of 2048�2048 pixels.

The choice of tracers depends on the information one
wants to gather. Since we are interested in passive mixing by
a mean flow, the dimension of the tracer must be much
smaller that the typical grain size. Generally one would want
the specific weight of the tracer to be similar to the fluid,
however since glycerol is highly viscous, we only need the
viscous forces induced by fluid movement to dominate the
buoyancy forces induced by the tracer particle. Because tra-
jectories are obtained using an image analysis technique, the
tracer must also be highly reflective to visible light. Air
bubbles less than 0.1 mm diameter were chosen to satisfy
these constraints.

A diffuser fed by a compressor was used to inject bubbles
into the fluid. The diffuser was placed at the bottom of the
container and embedded in 0.8 mm glass beads with the
Pyrex particles placed above. When the compressor is turned
on, the bubbles pass through the glass and into the Pyrex
medium, distributing themselves in the void space. The
lower square surface is screened and below the screen is an
inverted pyramid shaped piece that connects the test section

FIG. 1. Porous medium experimental setup.
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to the hydraulic circuit. The experiment begins when the
peristaltic pump is turned on and the glycerol begins circu-
lating through the test section. The air does not wet the solid,
the bubbles are small �	0.1 mm� compared to the smallest
grains ��0.4 cm� and due to the high viscosity of glycerol,
the bubbles remain trapped in the fluid phase and flow pas-
sively with the draining fluid.

A homogeneous porous medium, Hom1, was constructed
by placing 1.9 cm Pyrex spheres in the larger test section.
The spheres were packed randomly but distributed homoge-
neously on the bench scale. To preserve the correct refractive
index, they were carefully cleaned before being placed into
the container. The average porosity was 42%. This medium
was analyzed at three pumping speeds.

An additional homogeneous medium and two heteroge-
neous but periodic porous media were constructed in the
smaller test section �Hom2, Het1, and Het2�. Cylindrical par-
ticles of varying diameter were used: large �d=1 cm�, me-
dium �d=0.7 cm�, and small �d=0.4 cm�. A shaper �Fig. 2�
was used to construct layers and each layer was rotated 90°
from the layer immediately above and below. Though the
figure shows three distinct regions in each layer, relaxation
during packing created three amorphous sectors of roughly 5
cm height. A unit cell consists of four layers. Figure 2 illus-
trates the bead packing for the two heterogeneous media,
Het1 and Het2, with average bead diameters 0.812 cm and
0.689 cm, respectively. The homogeneous medium for this

size test section was packed with 1-cm-diameter cylinders.
These media are compared with the same pumping rate. Pre-
vious analysis has shown that Het2 and Hom2 behave simi-
larly but differently than Het1 �22,23�.

B. Penetrative convection

The laboratory model consists of a convection chamber
containing an initially stable, density stratified fluid, which is
heated from below causing destabilization. The bottom of the
parallelepiped test section is horizontal and hence the fluid is
homogeneous laterally. Heating the fluid from below creates
penetrative convection. Distilled water is used for the fluid
phase and fluoresceine is used to image the convective
domes, i.e. the evolution of the mixing layer with time.
Additionally, 80 �m pollen particles are used for the passive
tracer to reconstruct particle trajectories. The test section
is a tank with a square base �41�41 cm2� and height 40 cm
�Fig. 3�. Its lateral sides are insulated by 3-cm-thick remov-
able polystyrene sheets. When images are acquired, the insu-
lation on the side facing the camera is removed. A diffuser,
which also acts to insulate the upper surface, floats on the
surface of the water as it initially fills the tank. A warm tank

FIG. 4. �Color� Representative
projections on the xz �left-hand
side image� and yz planes �right-
hand side image� of three-
dimensional trajectories recon-
structed through scanning 3D
PTV for homogeneous media.

FIG. 2. Shaper and packing for the two heterogeneous media
Het1 and Het2.

FIG. 3. Experimental setup �a� and water diffuser �b�.

APPLICATION OF THE FINITE-SIZE LYAPUNOV … PHYSICAL REVIEW E 72, 056306 �2005�

056306-5



of water drains by gravity into a continually stirred colder
tank and that tank in turn drains to the diffuser. While the
diffuser floats upwards, it fills the test section creating a
linear stratification of the fluid, cold to hot from bottom to
top.

Thirty thermocouples were spaced vertically in the tank to
record changes in temperature. Following initial stratification
of the tank, a hot cryostatically controlled water bath was

attached to a metal base plate and experiment begins. A
2-cm-wide light sheet was employed to illuminate the central
region of the test section. Images of the pollen particles were
recorded using a CCD camera with a time resolution of 25
frames per second.

The lower boundary was initially at temperature T0
=288 K and then rapidly increased to Tm=292.6 K. The ini-

tial temperature stratification was �T̄ /�z=24 K/m.

FIG. 5. FSLE for Hom1 for two velocities and two threshold ratios: slowest velocity results are the open markers a=1.1 ��� 1.3 ���,
and 1.7 ���.

FIG. 6. FSLE for Het1 ���, Het2 ���, and Hom2 ���. a=1.6.
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IV. RESULTS

A. Porous media

Particle trajectories have been reconstructed using scan-
ning 3D PTV and two projections are shown in Fig. 4. The
two-dimensional trajectories prior to reconstruction have
been analyzed in other contributions �22–24� to study the
anomalous dispersive behavior the system exhibits.

All flows are initially non-Fickian; however, as time
progresses they become Fickian in the direction of mean
flow. For the homogeneous medium constructed with 1.9 cm
spheres, increasing the velocity causes the system to transi-
tion to a Fickian regime faster. The higher velocity has larger
longitudinal and transverse variances. In the smaller test sec-
tion, Hom2 and Het2 both reach an asymptotic behavior,

with Hom2 doing so sooner. Het1 does not transition to a
Fickian regime in any direction during the life of the experi-
ment.

The FSLE is a function of distance so the initial separa-
tion is normalized by the bead diameter. It was shown in �22�
that for the larger test section, the tracer must cover three
bead diameters to reach a Fickian regime in the transverse
direction �depending on the pumping rate�. For the other ho-
mogeneous medium, Hom2, the result is the same in the
horizontal directions but in the longitudinal direction the
tracer must cover about 13 bead diameters �23�. Since it is a
two-particle statistic, the information the FSLE carries is
substantially different than one particle statistics in general-
ized hydrodynamics studied by Moroni and Cushman
�22,23,25�.

FIG. 7. �Color� Visualization
of the mixing layer evolution.
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Figure 5 shows the FSLE for two different longitudinal
velocities in Hom1 �0.36 and 0.54 cm/s�. All trajectories
employed in the analysis are followed for 10 s. Distance has
been normalized to bead diameter and time is in seconds.
The apparent scaling law is �a�x��x−��a� at the intermediate
separations studied. The regions used for the least squares
regression are indicated with a line of the appropriate slope.
This is the region where the data are the most accurate. For
the slowest velocity, ��1.1�
0.878 and for 1.3�a�1.7, �
=1.05±0.02. For the fastest velocity ��1.1�
−0.86, ��1.3�

1 and requires a larger value of a to reach the exponent of
1.05 as seen from the data: 1.5�a�2, �=1.05±0.03. Since
the higher velocity has shorter a-time, we are able to obtain
data for larger a. For fixed a, higher velocity results in a
faster rate of the separation as do larger threshold ratios. As
the system goes Fickian, the FSLE should scale with x−2,
where x is the initial separation. However, we have not been
able to compute the FSLE for threshold values or initial
separations large enough to to test this scaling law.

As a approaches zero, the FSLE become horizontal. Au-
rell and co-workers point out that the FSLE converges to the

classical Lyapunov exponent as x goes to zero for small
enough a �1,4�.

We have also explored the influence of trajectory length
and found 10 s trajectories provide the best results for this
experiment. The twelve smallest separations have 100% of
the particles reaching the threshold, so there is no error in
computing the FSLE. As x increases, the slope of the FSLE
eventually decreases in magnitude. We believe this is a sta-
tistical artifact associated with the smaller number of trajec-
tories reaching the a-time and have stopped the analysis prior
to this event.

Figure 6 shows the FSLE for the smaller test section,
again normalized by average bead diameter �presented in
Sec. III A�. The straight lines indicate the region where least
squares regression was applied. For Hom2, 1.3�a�1.6, �
=1.05±0.01, and Het2 1.3�a�1.6, �=1.01±0.01. For
Het1, 1.3�a�1.6, �=0.98±0.01. �a�x� is largest for Het2
and smallest for Het1. This is demonstrated in the figure for
a=1.6, but also holds in general. The values of the FSLE
increase with increasing longitudinal velocity, and longitudi-
nal and horizontal variances. If the data is put in dimensional

FIG. 8. �Color� Reconstructed
centroids during mixing—color
evolves from red to blue with
time.
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form, Hom2 has the fastest rate of separation. At least 99%
of the particles are achieving the threshold for separations
less than 1

2 the bead diameter, giving a high quality estima-
tion of the FSLE at these separations.

The FSLEs have been computed using the 2D data prior
to construction of the 3D trajectories; however the FSLEs for
the 2D and 3D trajectories are nearly identical when the per-
cent of particles reaching the threshold is near 100%.

B. Penetrative convection

Typical images of the mixing layer are shown in Fig. 7;
the image is of the central 2 cm of the test section. Domed
structures and their growth with time are evident.

We introduce the Rayleigh number to describe the mixing
layer behavior:

Ra =
�g�T�z*�3

��

where � is the thermal expansion coefficient, � the thermal
diffusivity, � the fluid kinematic viscosity, g the gravitational
constant, and �T the temperature difference between the
lower boundary and the top of the mixing layer of height z*.
� is related to thermal conductivity k, the specific heat Cp,
and density � by

� =
k

Cp�
.

The onset of convection occurs when the Rayleigh number
reaches a critical value. Ra increases with time because z*

increases. Low Ra convection is organized in coherent struc-
tures, but at higher Ra the flow becomes turbulent and the
coherent structures �domes� appear and break continuously

in space. Characteristic dimensions of the domes are the
same order of magnitude as the mixing layer height, while
their lifetime is generally less than the time a fluid particle
needs to complete a revolution.

Three related structures occur over the life of the experi-
ments: growing domes or turrets with an extremely sharp
interface at their top, flat regions of rather large extent oc-
curring after a dome or other structure has spread out or
receded, and cusp-shaped regions of entrainment pointing
into the convective fluid.

Particle tracking techniques are employed to reconstruct
tracer particle trajectories inside the test section. Figure 8
displays barycenters reconstructed inside both the stable and
the unstable layers as they evolve with time. In each panel,
tracer particles and corresponding trajectories reconstructed
over 50 consecutive frames are overlapped. The colors range
from red to blue as a function of time.

Small line segments characterize particles with low veloc-
ity while long segments characterize fast particles. Fluid par-
ticles belonging to the mixing layer remain trapped within
the layer. As the height of the mixing layer increases, par-
ticles belonging to the interface between the stable and un-
stable fluid begin oscillating along the transverse direction
forming internal waves. Eventually the internal waves are
entrained inside the mixing fluid.

Figure 9 shows the a-times and the FSLE for the mixing
layer. The definition of the a-time is independent of the time
origin and consequently the FSLE represents an average over
the mixing layer as it grows. Three different threshold ratios
a are shown. As discussed earlier, not all particles reach the
desired threshold; we have chosen to cut-off the plots for
initial separations when the percent of particles reaching ax
falls below 75%. This cutoff was chosen to limit the under-
estimation of the FSLE while leaving enough data to study

FIG. 9. The FSLE and the a-time for the mixing layer of penetrative convection for varying threshold ratios: a=1.1 ���, 1.3 ���, and
1.7�+�. The points connected by a line are the FSLE �41 pixels=1 cm�.
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the larger initial separations. Utilized trajectories were of
length 2.6 s.

For these data, �a�x��x−��a� with �
0.86 at 1.3�a
�1.7 for the intermediate separations studied. For smaller
thresholds, � is smaller and for larger ratios the FSLE is
larger. This means, for example, that there is a faster expo-
nential growth rate for a set of particles with an average
separation from x to 1.7x than from x to 1.1x. A dependence
on a is not surprising as increasing a causes the sampling of
a larger range of movements in penetrative convection.

As a increases, so does the doubling time, hence the per-
cent of particles reaching the threshold decreases. However,
we note that the difference in this percentage at early sepa-
rations for values 1.1�a�1.3 is less than 1% and less than
2% when 1.1�a�1.7. At nine pixels the graphs differ by
10% �1.1�a�1.7�. The a-time reaches a maximum of 1.3 at
these separations when the comparison time is 2.6 s. The
decrease in percent of trajectories as a and x increase is most
likely due to growing fluctuations in the a-time.

C. �-stable Lévy processes

Lévy processes were generated for several different index
parameters, � where ��1 to guarantee a finite mean. The
results are illustrated graphically in Figure 10. Plots are log-
log and indicate a power law scaling in the initial separation
for the asymptotic limit, �a�x�=Cax−�, where � is the index
of stability. The results are for a fixed value of � and �=0.
Utilizing least squares regression, the exponent was found to
be �±0.07 for all values of � and a tested. Additionally we
found a decreasing dependence of Ca on a as � decreased.

The scaling relationship provides a quick and easy method to
obtain � from a two particle statistic.

D. Deterministic diffusion

The deterministic diffusion data generated from Eq. �1�
with p=0.8 is examined to understand the effect a and x have
on �a�x�. Our algorithm for computing �a�x�, as well as the
definition of �a�x�, differs from that of Aurell and co-workers
�1–6�. However, for time stationary data, such as the deter-
ministic diffusion data, our definition will coincide with pre-
vious definitions. We present several different values of the
FSLE for various threshold ratios �Fig. 11�. As a increases,
the FSLE decreases. The relative difference between �1.1�x�
and �1.6�x� , ��1.1�x�−�1.6�x�� /�1.1�x� remains near 35% after
the system goes asymptotic. In all cases, at least 99% of the
trajectory pairs reach ax. We note that we have used a linear
interpolation between points of the deterministic diffusion
rather than simply taking the first unit time the separation is
beyond the threshold. This makes the a-time smaller; hence
�a�x� is slightly larger than the results presented in �2�.

The irregularities in the intermediate region highlight the
sensitivity to the code parameters. Since a probability density
is being calculated, one must use a discretized time. For
shorter doubling times �smaller x and smaller a� a finer mesh
must be utilized. The results in Fig. 11 correspond to a fine
discretization for x less than 6 �number of bins per time
increment is 15�, and a coarser disrecretization for x�6
�number of bins per time increment is 5�. We used the coarse
mesh on the intermediate separations to show the effect of
the bin size, which is minor fluctuations in the FSLE.

FIG. 10. FSLE for an �-stable Lévy process for three values of � ��=1.2, �; 1.5, �; 2, •�. Solid lines indicate the power law relation
and have power equal to −�.
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Least squares regression was performed on this data and
the exponent was between 1.98 and 2.

V. CONCLUSIONS

A rigorous statistical mechanical definition of the FSLE
has been presented. The definition of the a-time explicitly
takes into account such phenomena as recirculation, nonsta-
tionary systems and periodic processes as well as providing a
solid mathematical definition for the FSLE.

The probabilistic definition for the FSLE has been applied
in several experiments. We analyzed the behavior of the
FSLE, �a�x�, for four systems: penetrative convection, flow
in porous media, Lévy processes, and deterministic diffusion.
In each experiment, for intermediate initial separations x, the
apparent scaling relation is �a�x��x−�. The exponent � is
dependent on a in the pre-Fickian laboratory experiments,
however the dependence of � on a decreases with increasing
a. There is no dependence of � on a for the Lévy motion or
deterministic diffusion. The coefficient of proportionality de-
pends on a for all systems.

For the homogeneous porous media, the value for � in-
creases with increasing a, up to �
1.05. The decreasing
dependence of � on a, as a increases, is associated with the
evolving heterogeneity in the preasymptotic regime. Increas-
ing the velocity increases the FSLE and the higher velocity
did require a larger a to attain �
1.05. The most heteroge-
neous medium �Het1� had a lower � than the homogeneous
media at all threshold ratios. Het2 in many ways behaves as
a homogeneous medium �23,24�, but has a � value between
Hom2 and Het1.

The penetrative convection experiment had a lower � and
hence has a slower growth rate of the a-time with initial

separation than the porous media. It also had � increasing
with a; however, this rate of growth slowed as a increased.
As was the case for all the porous media experiments, the
FSLE increases with increasing a. This interesting phenom-
ena is opposite to the deterministic diffusion data and Lévy
process and is clearly associated with the physics of the
preasymptotic regime. Recall that both the penetrative con-
vection and porous media experiments are preasymptotic,
while the deterministic diffusion and Lévy processes are not.

For the �-stable Lévy processes, the relationship �a�x�
�Cax−� holds with the dependence on a entirely in the co-
efficient of proportionality. This important result gives a
quick method to determine the stability parameter � from
data that display a Lévy behavior such as flagellated mi-
crobes �14�. The deterministic diffusion map was used to
verify the asymptotic behavior �a�x��x−2 and also fits well
with the results from the �-stable Lévy process. The deter-
ministic diffusion is a deterministic model for a two-stable
Lévy process. It was shown that increasing a caused a de-
crease in �a�x�, but the exponent remained unchanged. The
effect of a decreases with decreasing � for Lévy processes.

The results presented here differ from previous work in
several important ways and begin to extend the definition of
the FSLE for use beyond stationary systems, such as penetra-
tive convection where all separations times from x to ax are
counted for Ta�x�. Earlier studies had the threshold ratio
fixed and small to prevent sampling over many scales of
experiment. In this work, the ability to see the effect of the
scale by varying the threshold ratio is seen as an important
component in the study of the growth rate of the mixing zone
at different scales of observation. By varying both a and x
we can better observe the growth of the mixing zone over
multiple scales.

FIG. 11. FSLE for deterministic diffusion: solid line shows slope of −2; a=1.1�−�, 1.2 ���, 1.3 ���, and 1.6�+�.
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